LI AND ADAMS: LOSSY INDUCTIVE-POST OBSTACLES IN LOSSY WAVEGUIDE
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Fig. 1. A lossy postin a rectangular waveguide.

conductor, k, has the form [9]
y N2 “)

where o is the conductivity of the post.
The free-space field due to the current density distri-
bution of (3) is assumed to be

Y. a,H?(kr)e/™.

n=—c0

Ef=

X (5)
Consider an elementary shell of radius »” and width dr’
inside the post. The field due to the current distribution of
this shell is assumed to be

o0

Y a (r)HP(kr)edr.

n=—00

dE;(r’) = (6)

Then, a,(r’) is related to a;, as in [§]

()= —a kard, (kr') .;EIlirg )

Integrating (6) with respect to r” over the interval (o, r,)
yields

2we

2 k
an=—a;—%f rJ,(kr )%kc%dr’
- —'aann (8)
where
r, J,
6,= [0 2B o ©)
and

p="te= LT (- )). (10)

The tangential component of the electric field on the
surface can be obtained from (3)

o

Ex(r=”o)=%Jx(r=ro)= Y %-ef‘"". (11)
Substituting (8) into (11) yields
b 2we )
= = — jn0
E(r=r,) ¥ —cy a,e’™. (12)

n=-—o0

The calculation of scattered fields proceeds as in [8]. The
boundary conditien can-be expressed as
El(r=1,)+ EX(r=1,) = E,(r=7,).
This results in the matrix equation
| [H]la]l+[Z,])[a]=1c] (13)
where [H], [a], and [¢] are given in [8]. The additional

matrix [Z;] is a diagonal matrix; therefore, its entries are
determined by

0, forn#m
= 4
Z 2we . forn=nm. (1 )
70G,

As the conductivity o approaches infinity, all the entries
of matrix [Z, ] go to zero and (13) reduces to that obtained
in the lossless case.

The calculations of the transmission and reflection coef-
ficients proceeds as in {8]

4 - " 7c ’
T=1+ -1 a,,sin(-———na) 15
Eok’anzz_w( ) a (13)
= 4_ Z a sm(——+na) (16)
Eka,— o

Note that the only difference between the lossless and
lossy cases is- the addition of the matrix [Z;] and the
consequent modification of coefficients [a] as determined
by matrix equation (13). In general, the entries of the loss
matrix [Z,] are determined by (14), where G, is de-
termined by (9).

For good conductors, the calculation is simplified since
the magnitude of the complex number B is large, i.e., |B]
=y/6/we > 1. For large arguments, the Bessel function is
approximated as follows [10]:

J,(u) =

nr ”), for [u]>1. (17)

2_ —
o= 5 -3
In the integrand of (9), the ratio J,(8x)/J,(Bkr,) has a
significant value only as x approaches kr,.
Applying (17) and formulas sin(jx)= jsinhx and
cos( jx) = cosh x; it is found that

G,= kran(kro)fkr”efB(X—k’v) dx

1= e~ /Pkn

=er(kr)———]E—— (18)

where 8 =8, — jB; and B, = \/o/Zwe_. Because Bkr,>1,

then e ~/#*% = Q. Therefore

r,J,(kr,) .
G,= ———. 19
- (19)
Substituting (19) into (14) yields

09 . forn+m

= 2wef L 20)

Znm el S 1+ s fi =m. (

aakr,J, (kr,) 1+ orn=m
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The total power dissipated in the post is obtained as
follows (field quantities are rms rather than peak):

=/f/a]Ex[2dT=fff%]Jxlsz.

Substituting (3) into (21) yields

V2abr, & L2
Pd= O‘k Z lanl‘

I

(21)

(22)

IIL

The wall losses can be treated by perturbational meth-
ods. Recall that the fields due to a uniform filament
located at y = y’, z=z’ in a rectangular waveguide (Fig.
. 1) are [4]

WaLL LOSSES

S jknl . mmy’ . mmy
= 1 —Iplz—27|
E, Z_ T g S~ sin— e (23)
m=1 m
ha may’ . mwy
= n s PNy =T, |z—2
H,=— } sgn(z~2z’)>sin L sin— e 2=
m=1
(24)
o0
I mo i may’ may 1,z
H, mz aTa sin —= cos —=e (25)
where I} = jk’, I‘m=\/(m7r/a)2—k2, mz2.

Equations (24) and (25) are the Green’s function of the
magnetic field in rectangular waveguide. Using these equa-
tions, we can obtain the scattered magnetic fields due to
the volume current-density distribution inside the post

Hi=— Y 2 ["sgn(z—r,5in0
Haip? a/ sgn(z—r,sinf)
m=1 4

ma(c+r,cosb)
a

[}
Y ale/sin
n=-—o00

mﬂye— ,,,[z~rosm9|d0
a

(26)

ma(c+r,cos6)
- a

27)

where a;/ is the coefficient of the equivalent surface cur-
rent density of the post, {a]} is related to {a,} by [11]

(28)

m _ _
ye T,z rosm0|d0
a

2we 4
" kzwran(kro) "

and to {a}} by a} = a} /jk.. The incident magnetic fields
are obtained from (1), let £,=1

s

1 ‘ W.y —k’z
fIy = ot sim 76 7k (29)
H=— L cos T2 gz, (30)
wpa a

The power dissipated on the walls can be calculated by

(31)

where % is the intrinsic wave resistance; however, for a
good conductor it is [9]

Pd=gz/f|H’+HS|2ds

wp

%= 20 °

We now consider the numerical calculation of the mag-
netic fields. First, consider the left-hand side wall. The

total tangential component of the magnetic fields is (y =
0,H,=0)

(32)

H=H,=H ,+H,

(33)

where H,, stands for the dominant mode

. o0
a= _]We—jkz jﬂ'r fz’” Z a// jné
z ’, 2
wﬁa k n=—0o0
. m(c+r,cosl , .
- sin L—"———)e_/k lz=rsinflgg  (34)

a
and H,, stands for the higher order modes

B mar, fzﬂ i a/esin . mu{c+r,cos6)

Zra n=—00 a

—~T,,|z—7,sin8| do

‘e (35)
H

.4 can be evaluated by truncation (—N<n<N).
When |z| = r,, (34) can be reduced to [11]

juT
nka

—jk’z
zd €

(36)

s forzzv,

H, ,=- J—W (e—jk’z + I‘ejk’z),

—r, (37)

forzg
where T and T are the transmission and reflection coeffi-
cients, respectively.

Note that (36) represents a traveling wave and (37)
represents a standing wave.

The convergence of the series in (35), which is slow in

the post region, can be improved by separating H,, into
two parts, i.e.,

_ya 2
H,=HS+HY

(38)

where

20 X had r,

Hz(}ll)zf L4 Z a;,ejna Z (_;O)e—mw/a|z—rosm0|
2 n=-wo m=2

. ma(c+r,cosb
+sin M7 70080) 4y (59

20 S

=" L aper
0 pn=-—w

00

. Z _Cgl:e—mw/alz rsm0|_mW/ae—I‘m]z~rasin9|]
m=2 a Fm

+ /]
LG IATIN

- (40)
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Equation (39) can be simplified as

HS) = >4 Vg nt M]
f ‘ H=Z—ooa [fa(a)_f4(0) (41)
where
£1(8) = exp(~ Tz~ ysing)sin 2L E o050

+ [/
5(0)= exp(— 27'”|z -, sin0|) sinmg-cos—)

7(z —rysinf)

a

£,(8) = cosh

7(c+ rycosf)

f4(8) = cos

Equation (40) is a rapid convergent series; therefore, it can
be evaluated by truncation.

Similarly, for the right-hand side wall (y = a), we have
the following results:

H=H_+HY+HY 42
z zd zh zh
where
o I s _ ST (2
zd wuae k'a 2./
” jn0 ‘7T(C+ r 0050) —jk |z —r, sinf|
n—Z“OOa p de (43)
when |z| > r,, (43) reduces, respectively , to
T k.
4= rka® forzx>r, (44)
H =1L (e=i%7 4 Teik- , forzg—r 45
zd ka o
27 f1(8)+£,(8)
Hz(l) = — dé Z ” jn0 [1—__2__ (46)
" / e o £:(0)+ £,(8)
27 r
) — a’, gné _ 1"’ e
H f L ae Zzz( 1)"
LLLAP. 7,sinf)| mar r .
_ % —T,|z—r,sin8|
+ ]
- sin m_ﬂ(_c_ﬂ_) 0. (@7)

a

We now consider the top and bottom wall losses per unit
length. Let P, denote the power dissipated per unit length
on the top or bottom wall. Then

“ & “ *
—g?[fo H,H; dy+foHZHz dy]

where H, is determined by (26) and (29), H, is determined
by (27) and (30), and Z is determined by (32).
Calculations of the two terms of (48) are similar; con-
sider the second term only—the first term is evaluated in
[11].
Since {sin m7Y/a} is an orthogonal set over the interval
(0, a), hence

a a ra
f I{ZI:I;l< dy =f szHz’lzi dy +/ thH;';l dy (49)
o o o

(48)

11

where subscripts d,h denote the dominant and higher
order modes, respectively.

Note that orthogonality is maintained for top wall, but
not for side wall, losses.

Substituting (27) and (30) into (49) yields

H, HYdy = ——+ -
j; zdtl;q4 Y 20.)’1.(1 2a
a2 | p2n 7¢,(0) s o) 2
. P j; Js(g) -a—e de
'ﬂ'2 [ g 27
Re|e* [T T (6
k'wpa fo (0
776'0(0) Jk'z,(6) dﬂ] (50\
a ,
a I'02 2a 2ar
[ HoaHSdy=5= [T d87,(0) [T de*(s)

S (mw\: . mac,(0)
Y (I‘ a) sin —

m=2\"m

o zz_'llc;a(j_(ﬂeﬁpm[zo(a)+zo(¢)] (51)

where J,(8) is the equivalent surface current density distri-
bution on the post; it can be obtained by integrating (3)
with respect to r from o to r,. The result is

O)E T aem= ¥

n=—oo n=—oo ¢

’

n ejnﬂ

(52)

and
(53)

Equation (50) can be evaluated by using truncation. As
in (51), there still are convergence problems. In order to
overcome this difficulty, we again separate the series in
(51) into two parts.

c,(x)=c+ rocosx}

z,(x)=|—r,sin x|

Let
S ma\? ., mac,(0)
Mz(0,¢)—m2=‘,2(rma) sin p
. Sin MC_;.(_ﬂe‘rm[zo(o)+za(¢)]
=M,(0,9)+ M,(0,9) (54)
where
M1(0’¢)= Z
m=2
6 2L 12,(8)+ z,($)]
- sin mc, () sin mac,(¢) e  ° (55)
a a
M,(8,6)= ) sin mmc,(0) sin m'n'c;(d))
m=2

2 T 2,(0)+ 2,()]
I L DR WER OO RN B .
T,a

(56)
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Series (56) converges rapidly; hence, it can be evaluated
by truncation. A closed form of the series (55) can be
obtained

-—z 27c -z e
1le “ " cos a” —e % cos—2
M(6,¢) =+
1(6,¢) 4 az’ 7C,
cosh - COoS

_T L+ + + +

—Z, 2me -z 7
e % cos o —e ¢ cos—%

a

7c,

+
7wz
cosh T" —cos

(57)
where
2y =2,(0)+2,($)
c; =c,(0)+c,(9)
e, =c,(0)—c,(9). (58)
As in the case of side wall losses, the expressions of the

domiinant terms of top (or bottom) wall losses can also be
reduced when |z| > r,. The results are

alT|”

292 ’

(59)

faHdH,;" dy = forzzr,

[HHydy= % [1+012 —2cos2aR, (Te2+7)],
0 1
forz<—r,. (60)

IV. EQuivALENT CIRCUIT

The equivalent circuit for the lossless case can be repre-
sented by a “T” network consisting of a shunt reactance
X,, and two series reactance X,. The shunt and series
reactances X, and X,, respectively, can be related to the
reflection and transmission coefficients by

o _14T-T
X =1TeT (61

o1 1 X%

G s A (62

where T and T are the transmission and reflection coeffi-
cients, respectively. In the lossless case, the right-hand sides
of (61) and (62) are purely imaginary. For lossy posts, we
must modify the equivalent circuit by replacing jX, and
— jX, by Z, and Z,, respectively, as shown in Fig. 2. The
shunt and series impedances can also be related to the
reflection and transmission coefficients by [11]
1+I'-T
1-T+T
1 1 1
Ze=1-T-T 272
In Section II, we have shown the exact solutions of
transmission and reflection coefficients for the lossy post
case. Applying the solutions of 7 and T to (63) and (64),
we obtain the parameters Z; and Z; of the equivalent

Z,= (63)

(64)

L\

o
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Fig. 2. Equivalent circuit for a lossy post.

circuit. Let

Z!=R,+ jX! (65a)

Z;=Ry— jX; (65b)
and

X/=X,+AX, (66a)

X;=X,—AX, (66b)

where X, and X, are the shunt and series reactances,
respectively, for the lossless case.
Numerical calculations show that, for posts which are
good conductors
R =AX;< X,

Ri=AX/< X,

(67a)
(67b)

in agreement with Wheeler’s incremental inductance rule
[12]. The results of our numerical calculations satisfy (67)
within better than one percent. The wall losses can be
taken into account as follows. The wall losses are separated
into two parts, the losses due to the dominant waveguide
mode, and the losses due to the difference between the
total wall loss and the dominant mode wall losses.

The effect of the dominant mode wall losses can be
treated by consideration of the waveguide as a lossy trans-
mission line. The attenuation constant is given by [9]

a @d

22,
where 2, is the time-average power flow, and %, is the
time-average power dissipated per unit length in the guide
walls due to the dominant mode fields. The calculations of
ﬁ_’f and 2, have been treated in Section IIL

The effect of the difference between the total wall losses
and the dominant mode wall losses can be taken into
account by modifying the parameters of the equivalent
circuit.

Assume the parameters Z, and Z, should be modified
as follows:

(68a)
(68b)

Z,=R,+R.+ j(X,+AX,+AX)
Z,=R,+ R}~ j(X,~ AX)— AX))

where R/,
and R/, RY,

4, AX/, and AX/ are due to the post losses,
AX/, and AX; are due to the difference

a
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L.ossy Transmission
Line! Z,a+ 8.

Postm2

post 1
Fig. 3.

Equivalent circuit for a lossy post array and lossy walls.

TABLEI
THE MODIFIED EQUIVALENT CIRCUIT PARAMETERS (FOR LOsSY PosT)

9

Aa = 1.20 f= 10 o = 5.80E+7
e = 5 = 5%
0.100 0.180E-4 0.180E-4 0.727E-5 0.726E-5
0.200 0.614E-5 0.614E-5 0.122E-4 0.122E-4
0.300 0.229E-5 0.228E-5 0.166E~4 0.166E-4
10
AMa = 1.20 £f=10 g = 5.80E+7
e = ot % ]
0.100 0.570E-4 G.570E-4 0.230E-4 0.230E-4
0.200 0.194E-4 0.194E-4 0.386E-4 0.386E~4
0.300 0.723E-5 0.724E-5 0.524E-4 0.524E=4
11
Afa = 1.20 f-10 o= 5.808+7
ds o, 5 ct 5

0.180E-3 0.180E-3 0.727E-4
0.612E-4 0.614E-4 0.122E-3
0.229E-4 0.229E-4 0.166E-3

0.100
0.200
0.300

0.724E-4
0.122E-3
0.166E-3

between the total wall losses and the dominant mode wall
losses.

For a good conductor, the losses are small. Therefore,
the changes of the parameters, in first-order approxima-
tion, should be proportional to the lossy power, i.c., ‘

Ry Ry AXy AXy P”
R, R, AX, Ax; F

(69)

where P” is the excess wall losses (the difference between
the total wall losses and the dominant mode wall losses)
and P’ is the post losses. The complete equivalent circuit
may thus be specified and is shown in Fig. 3.

V. RESULTS

As noted previously, a rigorous solution has been ob-
tained for the lossy post case. Fig. 2 shows the modified
equivalent circuit obtained. Additional resistive elements
have been added in both series and shunt elements. Table I
shows typical equivalent circuit data for copper posts. Note
that (67) is satisfied. Furthermore, for good conductors, the
ratio R’,/R/, varies only slightly with conductivity and
frequency and is primarily a function of d /a. This ratio is
shown in Fig. 4. Fig. 5 shows computed transmission
coefficient data for a lossy two-element post filter, as a
function of conductivity. The parameter » may be chosen
as desired to yield different center frequencies.

The wall losses have been calculated using a perturba-
tional method. Computed results are shown in Figs. 6(a)—(c)

13
4 T | L B T L ™7 T
12— —
10}— —
= 8 d —
3
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2 6 fo——a —
= F J
£
-8 4 =
[:3
2 —
o L | B T I | T
o] 004 008 012 [20) 020 024 028 032 036 040
. : d/c
\
Fig. 4. Resistance ratio (R}, /R},).
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210 on
60— fo —

1 | ] 1 i 1 1 | ] ] |
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(27

Fig. 5. Filter response (transmission coeflicient) of a lossy post array.

for three different post sizes (d/a = 0.10,0.20,0.30). The
total wall losses per unit length, including side, top, and
bottom walls, have been calculated as a function of posi-
tion z relative to the post axis. Calculations have been
made assuming that the post and walls are copper and
b=a/2.

The dominant mode wall losses have also been com-’
puted and the difference between the total wall losses and
the dominant mode (total minus dominant mode) is also
plotted in Fig. 6. The dominant mode losses may, of
course, be calculated very simply and so the difference
between total and dominant mode losses is of interest.
Note that the wall losses of the various modes are not
orthogonal and thus the difference of total and dominant
mode losses cannot necessarily be ascribed solely to higher
order mode losses. Fig. 6 shows the wall losses per unit
length for a single post. Table II shows. the corresponding
(integrated) wall losses over a length L of waveguide on
either side of the post axis. This represents an integration
of the data of Fig. 6. The integration extends over threc
distinct tegions (z < —d/2, |z|<d/2, and z>d/2) and
involves side, top, and bottom walls of the waveguide as
well as post losses. L varies from d /2 to A, /2 to show the

.effect of various post spacings. All losses in Table II are

normalized to incident power. Note that the total minus
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Fig. 6. Wall losses per unit length. (a) d/a=0.10, (b) d/a =020, (¢
d/a=0230.

dominant losses appear to have reached a value close to
their peak value at A, /4, which agrees with what one
would expect relative to higher order mode losses. The
total losses are represented by the sum of the post losses
and the total wall losses. Note that the total wall losses and
post losses are comparable in some cases. If the post wire is
constructed of a lossy material such as brass, then post
losses would increase proportionately. Thus, post losses
may be comparable to wall losses or may even exceed
them. Note particularly that the total minus dominant
losses are relatively small compared to the sum of post and
dominant mode losses. The ratio varies from 10.2 to 18.5

O T T 17 — 1t T T 1 1 1T 17
F wall losses per unit length (d/a =0300)
i b—ar2 E
Total wall losses | \\ T
[~ ——-— Dormnant mode o),
Wal losses k\ \
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£ mode / \| le——a _.{ E
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- / —
e /
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~40 -30 ~20 -10 00 10 20 30
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©
Fig. 6. (Continued)
TABLE 1I
RELATIVE WALL LOSSES
{ a/a=1.20, E=5NZ, g=5,B0E+7 }
d/a=0.10 { post losses = 0.254E-3 )
L a2 Ap/8 Agly 3g/8 Agf2
Total wall losses  0.498E-4 0.1868-3 0.329E-3 0.4598-3 0.578E-3
D“z:‘;:“:ﬂ:::: 0.1528-4 0.106E-3 0.236E-3 0.363E-3 0.482€~3
Total-Dominant 0.346E-4 0.800E-4 0.938E-4 0.962E-4 0.9628-4
d/a=0,20 { post losses = 0,2158-3 }
L a2 Ag/8 Agl4 Dgl8 Ag/2
Totsl wnll losses 0.5196-4 0.131F-3 0.2766-3 0.411E-3 0.532E-3
Dontadns mode 0.1538-4 0.716E-4 0.200E~3 0.330£-3 0.451E-3
Total-Domtnant 0.366E-4 0.596E-4 0.768E-4 0.809E-4 0.814E-4
d/a=0.30 ( post losses = 0.192E-3 )
L a2 Ag/8 g/t Ng/8 Ag/2
Total wall losses 0.421E-4 0.742E-4 0.218E~3 0.3556-3 0.480E-3
Dominant mode 0.136E-4 0.373e-4 0.1628-3 0.293E-3 0.418E-3
Total-Dominant ¢.285E-4 0.3A9E-4 0.56lE-4 0.625E~4

0.615E~-4

percent for L <A, /2. Thus, if one were to approximate
losses by the sum of post losses and dominant mode losses
only, the error would be less than 18.5 percent in this
region. This approximation is represented in Fig. 3. One
may then readily cascade such circuits to analyze the lossy
characteristics of an array of posts. This method would
yield reasonably accurate results and would be relatively
easy to apply. For a more accurate representation, we need
to consider the total minus dominant mode (excess) term
which may be taken into account by utilizing (69).

VI. CONCLUSIONS

Lossy inductive posts in a lossy rectangular waveguide
have been treated. Post losses are taken into account by a
rigorous moment-method solution which yields a modified
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equivalent circuit. Wall losses are taken into account by
perturbational methods. Total wall losses are separated
into dominant and excess losses. Dominant losses are
included in a lossy transmission-line model. Excess losses
may be neglected or incorporated by further modification
in the equivalent circuit.
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Complex Propagation Constants of Bent
Hollow Waveguides with Arbltrary
Cross Section

MITSUNOBU MIYAGI

Abstract —An integral representation of the complex propagation con-
stant 8 has been derived from Maxwell’s equations for cylindrical, hollow,
bent, oversized waveguides with uniform curvature and with arbitrary cross
sections. The method makes the calculations much simpler than the ‘con-
ventional method, i.e., the characteristic-equation method, although it has
not yet been tried for three-dimensional bent waveguides.
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I. INTRODUCTION

OLLOW WAVEGUIDES are important transmis-

sion media' for CO, laser light because they are
expected to be able to carry high power [1]. One of the
serious problems of hollow waveguides is the increased loss
due to bends. Therefore, waveguide structures with small
bending losses should be designed for the realization of a
high-powered delivery system [1]-[4].
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